On the Structure of the Fundamental Series of Generalized Harish-chandra Modules

نویسندگان

  • IVAN PENKOV
  • GREGG ZUCKERMAN
چکیده

We continue the study of the fundamental series of generalized Harish-Chandra modules initiated in [PZ2]. Generalized Harish-Chandra modules are (g, k)-modules of finite type where g is a semisimple Lie algebra and k ⊂ g is a reductive in g subalgebra. A first result of the present paper is that a fundamental series module is a g-module of finite length. We then define the notions of strongly and weakly reconstructible simple (g, k)-modules M which reflect to what extent M can be determined via its appearance in the socle of a fundamental series module. In the second part of the paper we concentrate on the case k ≃ sl(2) and prove a sufficient condition for strong reconstructibility. This strengthens our main result from [PZ2] for the case k = sl(2). We also compute the sl(2)-characters of all simple strongly reconstructible (and some weakly reconstructible) (g, sl(2))-modules. We conclude the paper by discussing a functor between a generalization of the category O and a category of (g, sl(2))-modules, and we conjecture that this functor is an equivalence of categories. Mathematics Subject Classification (2000). Primary 17B10, 17B55.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

GENERALIZED HARISH-CHANDRA MODULES WITH GENERIC MINIMAL k-TYPE

We make a first step towards a classification of simple generalized Harish-Chandra modules which are not Harish-Chandra modules or weight modules of finite type. For an arbitrary algebraic reductive pair of complex Lie algebras (g, k), we construct, via cohomological induction, the fundamental series F ·(p, E) of generalized Harish-Chandra modules. We then use F ·(p, E) to characterize any simp...

متن کامل

To the memory of Armand Borel GENERALIZED HARISH-CHANDRA MODULES WITH GENERIC MINIMAL k-TYPE

We make a first step towards a classification of simple generalized HarishChandra modules which are not Harish-Chandra modules or weight modules of finite type. For an arbitrary algebraic reductive pair of complex Lie algebras (g, k), we construct, via cohomological induction, the fundamental series F ·(p, E) of generalized Harish-Chandra modules. We then use F ·(p, E) to characterize any simpl...

متن کامل

Algebraic methods in the theory of generalized Harish-Chandra modules

This paper is a review of results on generalized Harish-Chandra modules in the framework of cohomological induction. The main results, obtained during the last 10 years, concern the structure of the fundamental series of (g, k)−modules, where g is a semisimple Lie algebra and k is an arbitrary algebraic reductive in g subalgebra. These results lead to a classification of simple (g, k)−modules o...

متن کامل

A Construction of Generalized Harish-chandra Modules for Locally Reductive Lie Algebras

We study cohomological induction for a pair (g, k), g being an infinite dimensional locally reductive Lie algebra and k ⊂ g being of the form k0 + Cg(k0), where k0 ⊂ g is a finite dimensional reductive in g subalgebra and Cg(k0) is the centralizer of k0 in g. We prove a general non-vanishing and k-finiteness theorem for the output. This yields in particular simple (g, k)-modules of finite type ...

متن کامل

Classification of Simple Harish-chandra Modules over the High Rank Virasoro Algebras

A notion of generalized highest weight modules over the high rank Virasoro algebras is introduced in this paper, and a theorem, which was originally given as a conjecture by Kac over the Virasoro algebra, is generalized. Mainly, we prove that a simple Harish-Chandra module over a high rank Virasoro algebra is either a generalized highest weight module, or a module of the intermediate series.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011